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M O D E L I N G  OF V E R T I C A L  T U R B U L E N T  E X C H A N G E  

IN A S T R A T I F I E D  N E A R - W A L L  F L O W  

A .  T .  Z i n o v ' e v  a n d  S.  N .  Y a k o v e n k o  1 UDC 532.517.4 

A modified model of turbulence is proposed to describe the processes of vertical transport in 
inhomogeneous turbulent flows. This model includes algebraic relations for the Reynolds stresses 
and turbulent-ezchange coefficients. Using this model, the growth of the depth of a mixed layer 
under the action of the wind load in neutral and stable stratified near-waU flows has been 
predicted. The calculation results for a stable stratified flow that were obtained using the modified 
and standard two-parametric models of turbulence are compared with experimental data. 

Mathematical modeling of the temperature regime in stratified lakes and water storages requires the 
use of adequate approximations of vertical turbulent exchange. The (E-e) model of turbulence is frequently 
used now to define the effective transport coefficients in transport equations for velocity and temperature 
(concentration). Most of its variants, however, do not take into account the damping of thh vertical fluctuations 
of velocity near the bottom and the free surface, which makes the obtaining of reliable characteristics of 
turbulence in the corresponding regions rather problematic. A correct modeling of the parameters of turbulent 
exchange in the region of a thermal wedge remains an important problem. A solution of this problem will 
make it possible to describe adequately the transport of heat and matter between the surface and bottom 
regions in stratified reservoirs. An extended variant of the (E-e) model of turbulence that involves algebraic 
relations for determination of the Reynolds stresses is considered in the present paper. 

The improved model of turbulence was tested by solving the problem of deepening the mixed layer in 
constant-density and stratified fluids under the action of wind stresses. 

M a t h e m a t i c a l  M o d e l .  In modeling hydrophysical processes in a stable stratified flow we used 
a hydrostatic approximation and an assumption of horizontal homogeneity (averaging of hydrodynamic 
quantities in the horizontal plane). If the vertical component W of the mean-velocity vector is absent, the 
processes of turbulent transport of heat (salinity) and momentum are described by the equations 

Ot = ~z A ~z  - (WO) ; (1) 

a t  = o .  t - ( u w )  , a t  : - ( ' ' ' )  �9 ( 2 1  

Here T and 0 are the mean and fluctuating components of the temperature (salinity) of water, U - (U, V) 
and u = (u, v) are the vectors of the mean and fluctuating components of the flow velocity in the horizontal 
plane, w is the vertical component of the velocity fluctuation, ( . . .)  denotes the averaging over an ensemble 
of realizations, ~ and v are the coefficients of molecular transport, t is the time, and the vertical coordinate 
z is directed upwards and counted from the bottom. 
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The  g rad ien t  re la t ions  (w0)  = -A,(OTIOz), (uw I = -v t (aUlaz) ,  and (vw) = -u t (aV/az)  in 
combination with the standard (E-e)  model of turbulence lead to the closure of Eqs. (1) and (2) [1-3]. 
Here At and yt are the turbulent temperature diffusivity (diffusion) and viscosity. The model of turbulent 
transport can be refined by involving differential transport equations for turbulent fluxes of momentum and 
heat (second-order correlations of thermohydrodynamic fields) [4-6]: 

Ovj Ov~ gi gj 
L((u iu j )  ) = - (u iuk)  ~ - (ujuk) ~ + ~T (p'uj) + -~ (p'ui) + r i j  - eij; (3) 

OU~ OT g~ 
L((u~o)) = - ( u : ) ~  - ( u ~ )  ~ + ~ (p'o) + ~,e - ~o, (4) 

where gi = (0, 0,--g) is the vector of gravity acceleration, p* is the water density averaged over the entire 
flow, p and pl are the mean (over the ensemble of realizations) and fluctuating components of the density, 
and the density is found from the equation of state p = p(T). The sources of buoyancy in the Boussinesq 
approximation [Ip(xi, t) - P*I << P* and Opo/Oxi = P*gi, where 190 is the hydrostatic pressure] contain the 
correlations (p'ui) and (p'O) determined from the transport equations 

c~Vi 0P gi (~Ot2) L((p' , . ) )  = -(p',,k) ~ - (p',.) ~ + --: + ~ .  - ~,, 

(5) Op OT Op 
L ( (p ' 2 ) )  = -2(p'uk) ~ - ~#, L((p'O)) = - (p 'uk)  ~ - (UkO) ~ -- epO. 

The convective-diffusion operator in Eqs. (3)-(5) has the form 

or o~ 
L(~) = -~- + Uk ~ - D(r 

where the terms D(~) describe the processes of molecular and turbulent diffusion (contain triple correlations). 
The dissipative terms are modeled as [4-6] 

2 l e  l e  
eij = "~e6ii, ~iO = ~i# = O, ep = R E (PrZ)' epo = R E  (psO)" 

The expressions for the correlations with pressure fluctuations rij ,  ~ri0 , and lri#, which take into account the 
effects of the mean velocity shear, Archimedes buoyancy forces, and the free surface, were borrowed from 
[5-71. 

The differential model (3)-(5) is simplified and becomes an algebraic model if we ignore the terms 
L(~) in the equations for the tangential Reynolds stresses (uiuj) (i ~ j)  and correlations (uiO), (p'ui), (p'O I, 
and (#r~), and assume the advection and diffusion terms in the equations for the normal Reynolds stresses (in 
particular, for (w2)) to be proportional to the corresponding terms of the equation for the turbulence energy 
E = (uiui)/2, as in [6, 7]. Under the assumption of horizontal homogeneity and for W = 0 the resultant 
relations for the second-order correlations are 

(wO) = E -(w2)(OT/Oz)  + [1 - C20(1 - C~of)](-(g/p*)(p'O) ) " (6) 
(Clo + C~of)~ 

(uw) = E [1 - C2(1 - (3/2)C~f)](-(w2)(OU/Oz) - (g/p*)(p'u)). 
(Cl + (3/2)C~f)e ' (7) 

(vw) = E [1 - C2(1 -(3/2)C~f)](-(w21(OV/Oz) - (g /p*) (p ' v ) ) .  
(Cl + (3/2)C~f)e ' (8) 

2 .E(  1 _ 2C~fe + [1 -C2(1  - 2 C ~ f ) ] ( P -  3G)); 
(w2) = 5  . (Cl + 2C~f)e + P - e  

(9) 

(p'O) = R(E/~)[L - (wO)  ~OP _ (p'w) ~OT]j ; (10) 
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~z - (1 - C2o)(p w) ~-z ; (11) 

op , ov]; 
(p'v) = C ~ ' ( E / e ) [ -  (vw) -~z - (1 - C2o)(p w) Oz J (12) 

(p'w) = S -(w2)(OP/OZ) + [1 - C2e(1 - C~.of)](-(g/p*)(p'2) ). 
(Cza + Clef)~ ' (13) 

(p,2) = -2n(  E/v)(p'w) c3p 
~z (14) 

~ + c ,  a = - ( / , , , )  . 

Here P and r are the rates of production and dissipation of the turbulence energy, G is a source term caused 
by the action of Archimedes forces, and Cz = 1.8, 6'2 = 0.6, C~ = 0.5, C~ = 0.3, Cze = 3.0, C20 = 0.5, 
C~e = 0.5, C~ e = 0.3, and R = 0.8 are the constants. The damping of the vertical fluctuations of velocity near 
the free surface (z -- H)  is taken into account by introducing into the algebraic relations (6)-(9) and (13) an 
empirical function f (z )  of the form [7] 

E3/2 r E~/2 
f - Cf---~--iH-z-t-O.04 es ]-1' 

where Es = EJz=H, ~s = eJz=H, and 6 ' / =  1/15 is an empirical constant. 
A successive substitution of (14) into (13), (13) into (11) and (12), (11) into (7), (12) into (8), and also 

(13) into (10) and (10) into (6) yields the gradient relations 

Op Ou = ( 

a, - - - -  (w2)E 
(C,o + C~j)e + [I - C20(l - C~,I)][2(g/p*)a(E2/~)(-Op/az)] ' 

A, = (w~-)E + [I - C2,(I - C~eI)]R(E~-/e)G (15) 

(C,o + C{,I)~ + [i - C2o(l - C~ol)][(g/p*)a(E2/~)(-aMaz)]' 

[i -6'2(1 - (3/2)C~I)][(w2)E + (I -C2s)C{e*(E2/e)G] 
vt= 

(6'I + (3/2)C~/)e + [i - C~.(I - (3/2)C~I)][(g/p*)C{eZ(E2/e)(-Op/Oz)] ' 

where tit is the coefficient of turbulent mass transfer. The algebraic model (15) differs from that used in 
[4-6] by the presence of two relations for dt and At instead of one relation for the coefficient of turbulent 
heat transfer (mass transfer). This is due to the fact that  the functions p(T) and / (0 )  can be nonlinear (for 
example, if T is the temperature  near the point of 0~ 

With (9) and (15) taking into account, the system of equations of turbulent transport acquires the 
same form as in [1-3]: 

aT 8 [  aT] 
~-'-~ --" O"-z K T ~z ; 

ou O[ ou] 
OE O[ OE] 
"Dr = ~z KE-~z + P - z ;  

O"7 = O-'-; K~ ~ + -~ (r - ~2~), 

(16) 

(17) 

(18) 

(19) 
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T = Tb, 

at the bo t tom (z = 0) and 

where 

[fav   1 op 
P = v t L \ c g z ]  + \ O z ]  j + G ,  G =  ~. dt-~z. 

The coefficients of the effective vertical transport  of heat, momentum,  and turbulence parameters are 
determined from the relations 

K T = A + A t ,  g u = v + u t ,  g E = u + c s E  Ke = v + e e E  
e 

The quantit ies A,, v,, and dr, assigned in accordance with (15), are complex functions of U, T, E, 
and e, in contrast  to those used in [1-3]. The empirical coefficients and functions are C1 = 1.55, C2 = 
2(1 - 0.3 exp ( -Re~))  [Ret = E2/(ur is the turbulent  Reynolds number] [1-3], Cs = 0.22, and Ce = 0.15 [4]. 

The  system (16)-(19) is supplemented by the boundary conditions 

OU OE E 312 
g u  Oz = k, lUIU, oz = 0, = c ,  --g-- (20) 

aT aU s aE = k,.[I-,-113/2 ' 
KT-~z = O, Kv Oz = p' Oz t'p"a c9"-~ = 0 (21) 

on the free surface (z = H).  Here Cb = 0.314, kb = 0.014, kr = 2.5, Ib is the scale of roughness for z = 0 [1, 
2], Tb is the tempera ture  (salinity) of water at the bot tom,  and r is the wave load (shear stress) on the free 
surface of the flow. The  parameters  Tb and r can be different depending on the specific formulation of the 
problem. 

The  following profiles axe considered as known for t = 0: 

T(O,z) = To(z), U(O,z) = Uo(z), E(O,z) = Eo(z), e(O,z) = G0(z). 

N u m e r i c a l  I m p l e m e n t a t i o n  a n d  C a l c u l a t i o n  R e s u l t s .  The proposed model of turbulence was 
used to calculate the evolution of turbulent  motion in an open channel which was initiated by a wind load 
on the free surface. The  nonlinear boundary-value problem (9) and (15)-(21) was solved numerically by the 
finite-difference method .  The  balance method  [8, 9] was used to obtain implicit finite-difference schemes that  
approximate the  differential problem. The  system of algebraic finite-difference equations was solved by a 
scalar sweep method  with iterations introduced because of nonlinearity. Calculations on successive uniform 
grids (each of them differs from the previous one by a twofold increase in the number  of grid nodes N in the 
z direction) showed that  for N .-. 100 the solution is almost independent  of a further increase in the number 
of nodes; hence, we used N -- 100. The  t ime step was chosen such that  no noticeable changes in the sought 
functions were observed with decreasing t ime step. 

We consider the  evolution of a shear flow in a circular channel under  the action of a constant shear 
stress applied to the free surface of an initially quiescent fluid. The  channel height is H = 30 cm. The  wind 
load w = Irl  in all the calculations was taken equal to 0.995 g / ( cm,  see2), which corresponded to experimental 
conditions [10]. The  growth of the depth of the mixed layer in constant-density (Op/Oz = 0) and initially 
stable stratified (Op/Oz = (cgp/cgz)o = 1.92- 10 -a g / c m  4 for t = 0 [10]) fluids was calculated. The  function 
T in (16) was the salinity (concentration of salt in water) linearly related to the density as p(T) = po + s T  
(p0 is the density of fresh water at a temperature  of 13~ [10] and a is a constant coefficient). The molecular 
viscosity and diffusion (of salt in water) are v = 0.01 cm2/sec and A -- 1 .2 .10  -5 cm2/sec [10]. 

Figures 1-6 show calculation results obtained for the s tandard (E-G) model [1-3] with turbulent- 
exchange coefficients vt = 0.09E2/.e and At = dt = 0.8ut (dashed curves) and for the modified algebraic model 
(9) and (15) (solid curves). 

Figure 1 shows the turbulent  viscosity ut(z) as a function of the distance from the channel bottom. 
The lower values of ut(z) in the surface layer which were obtained using the modified model are caused by 
the damping effect of the free surface on velocity fluctuations. Mean-velocity profiles for a uniform fluid are 
shown in Fig. 2. The  analysis of the numerical solutions shows that  the mean-velocity distributions plotted 
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Fig. 1. Turbulent viscosity distribution for t = 180 sec: constant-density flow (curves 
1 and 3) and stratified flow (curves 2 and 4). 

Fig. 2. Mean-velocity profiles in a homogeneous fluid obtained using the standard 
E-e  model (dashed curve) and the modified model (solid curve). 
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Fig. 3. Dynamics of fluid-density behavior calculated using the modified model (the 
points indicate every other node of the grid). 

Fig. 4. Distributions of vertical root-mean-square fluctuations of velocity for t = 
180 sec: constant-density flow (curves 1 and 3) and stratified flow (curves 2 and 4). 
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Fig. 5. Dynamics of the mixed-layer thickness obtained using the standard (E-e)  model 
(dashed curve) and the modified model (solid curve). 

Fig. 6. Entrainment velocity u e / u .  versus the Richardson number Rio: curve 1 refers to 
the model with an algebraic relation for the length scale L ... E312/e ~ D [11], curve 2 
refers to the model with a transport equation for L [11], curve 3 refers to the standard 
(E-e)-model, and curve 4 refers to the modified model. 

in Fig. 2 correspond actually to a steady-state solution of problem (9) and (15)-(21). The substitution of the 
standard model for the modified model leads to an insignificant difference in the calculated curves U(z) .  

For the case of a linearly stratified fluid at the initial moment, the solution of problem (9) and (15)-(21) 
is unsteady within the entire interval 0 ~ t ~ 250 sec. A turbulent shear flow that arises initially in the near- 
surface layer penetrates into the lower layers of the quiescent fluid and involves them in the turbulent motion. 
The process of deepening of the mixed layer is illustrated by the pattern of density variation in Fig. 3. This 
calculation was performed using the modified model of turbulence, and the calculations using the standard 
model predict similar results. 

Distributions of the vertical rc~t-mean-square fluctuations of velocity (w 2) obtained using the standard 
and modified E-e  models for t - 180 sec are shown in Fig. 4. The curves (w 2) for a turbulent constant-density 
flow are also shown here. Both models describe the suppression of turbulent fluctuations of velocity by stable 
stratification, while only the modified model (curves 1 and 2 in Fig. 4) describes the damping by the free 
surface of the fluid. 

The dynamics of the mixed-layer thickness D = D( t )  in a stratified fluid that was calculated using two 
models of turbulence is shown in Fig. 5. The same figure shows an experimental dependence D = D( t )  from 
[10]. The lower boundary of the mixed layer in the calculations was assumed to be the value of z for which 
vt = 1 cm2/sec. The dependence D = D( t )  predicted by the modified model is in better agreement with 
the experiment than the dependence obtained using the standard model of turbulence, though a qualitative 
agreement is observed in both calculations. 

Figure 6 shows the velocity of entrainment ue = d D / d t  of the nonturbulent fluid into a turbulent region 
(of size D) as a function of the flow Richardson number Rio = g(Op/Oz)oD2/(2p*u2.) ,  where u. = ~ is the 
friction velocity. The calculation results obtained using the standard and modified E-e  models, the models 
of turbulence from [11] (dashed curves), and also the measurement data of [10] are shown in the figure. The 
model from [11] includes transport equations for the second-order correlations without regard for the effect of 
the mean shear, buoyancy forces, and damping by the wall in the correlations with pressure fluctuations that 
enter in these equations, and a transport equation (or an algebraic relation) for the linear scale of turbulence 
L .~ E3/2 /e  instead of the transport equation for dissipation e. It is seen from Fig. 6 that the results obtained 
using the proposed model of turbulence are in better qualitative and quantitative agreement with experimental 
data than the results obtained using the standard E-e  model from [1-3] and the models from [1t]. 
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Results of the calculations performed give grounds for using the proposed model of the vertical turbulent 
exchange for numerical modeling of unsteady hydrophysical processes in deep stable stratified lakes and water 
storages, particularly when a more detailed description of the turbulent characteristics of the mixed surface 
layer is needed. 

The authors are thankful to O. F. Vasil'ev and A. F. Kurbatskii for their attention to this work and 
for valuable discussions of the results. 
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